yosys4gal/compiler/src/fitter.rs
saji fb4ae03c91 fix 16v8 regression with tristate/registered
Tristate can't be set on registered logic in 16V8. We add a check
to skip those.
2024-05-05 17:30:11 -05:00

450 lines
16 KiB
Rust

use std::str::from_utf8;
use crate::pcf::PcfFile;
use crate::yosys_parser::{
GalSop, Graph, NamedPort, Net, Node, NodeIdx, PortDirection,
};
use galette::blueprint::{Blueprint, PinMode};
use galette::chips::Chip;
use log::{debug, error, info, warn};
use thiserror::Error;
use galette::gal::{false_term, true_term, Pin, Term};
#[derive(Debug, Error)]
pub enum MappingError {
#[error("OLMC missing output: {0}")]
OLMCMissingOutput(String),
#[error("Could not find constraint for port {}", .0.name)]
MissingConstraint(NamedPort),
#[error("Could not find the SOP input")]
MissingSOP,
#[error("Could not find a sop to fit SOP {name} of {sop_size}, wanted {wanted_size}")]
SopTooBig {
name: String,
sop_size: usize,
wanted_size: usize,
},
#[error("Unknown error")]
Unknown,
#[error("galette error")]
Galette(#[from] galette::errors::ErrorCode),
}
// attempt to map graph into blueprint
/// Acquire the SOP associated with the OLMC port.
fn get_sop_for_olmc(graph: &Graph, olmc_idx: &NodeIdx, port: &str) -> Result<GalSop, MappingError> {
let input = graph.get_node_port_conns(olmc_idx, port);
debug!("Found connections into OLMC Input: {:?}", input);
debug!("OLMC {:?}", graph.get_node(olmc_idx));
let sops_on_net: Vec<_> = input
.iter()
.filter_map(|i| {
let driver_cell = i.get_other(olmc_idx)?;
if driver_cell.1 != "Y" {
return None;
};
let node = graph.get_node(&driver_cell.0)?;
debug!("Found driver node {:?}", node);
match node {
Node::Sop(s) => Some(s.clone()),
_ => None,
}
})
.collect();
if sops_on_net.is_empty() {
return Err(MappingError::MissingSOP);
}
Ok(sops_on_net[0].clone())
}
fn map_remaining_olmc(
graph: &Graph,
olmc: NodeIdx,
unused: &Vec<(usize, usize)>,
) -> Result<(usize, usize), MappingError> {
// (index, size)
let mut chosen_row: Option<(usize, usize)> = None;
let sop = get_sop_for_olmc(graph, &olmc, "A")?;
let sopsize: usize = sop.parameters.depth as usize;
for (olmc_idx, size) in unused {
match chosen_row {
None => {
if size > &sopsize {
chosen_row = Some((*olmc_idx, *size));
}
}
Some(r) => {
// we do the comparison (size > SOP Size)
if size < &r.1 && size > &sopsize {
chosen_row = Some((*olmc_idx, *size));
}
}
}
}
// at the end, if we have chosen a row, we can swap it in.
match chosen_row {
Some(x) => {
info!(
"mapping {olmc:?} size {sopsize} to row {} with size {}",
x.0, x.1
);
Ok(x)
}
None => {
assert!(!unused.is_empty(), "should have rows available");
let minsize = unused.iter().map(|x| x.1).min().unwrap();
Err(MappingError::SopTooBig {
name: sop.name.unwrap(),
sop_size: sopsize,
wanted_size: minsize,
})
}
}
}
fn chip_to_olmc_offset(chip: &Chip) -> usize {
match chip {
Chip::GAL16V8 => 12,
Chip::GAL22V10 => 14,
_ => panic!("Invalid chip!"),
}
}
fn find_hwpin_for_net(
graph: &Graph,
pcf: &PcfFile,
olmcmap: &[Option<NodeIdx>],
chip: &Chip,
net: &Net,
) -> Result<u32, MappingError> {
// this does a double lookup. first it finds the Input on the net,
// then it finds the port on the input of the GAL_INPUT.
// find the input on the net.
let inputs: Vec<&Node> = graph
.find_nodes_on_net(net)
.iter()
.filter_map(|n| {
let node = graph.get_node(n)?;
match node {
Node::Input(_) => Some(node),
Node::Olmc(_) => Some(node),
_ => None,
}
})
.collect();
// now we have an array of inputs, this should be one driver element.
if inputs.len() != 1 {
return Err(MappingError::Unknown);
}
let conns = inputs[0].get_connections();
match inputs[0] {
Node::Input(_) => {
let port_nets = conns.get("A").ok_or(MappingError::Unknown)?;
assert_eq!(port_nets.len(), 1, "should only be one input to GAL_INPUT");
let pnet = &port_nets[0];
if let Some(p) = graph.find_port(pnet) {
debug!("Found a port after traversing inputs, {:?}", p);
// look up the pin.
p.lookup(pcf)
.ok_or(MappingError::MissingConstraint(p.clone()))
} else {
Err(MappingError::Unknown)
}
}
Node::Olmc(_) => {
// find the row that this olmc is in.
debug!("an olmc is driving this net, looking up what row it is");
let olmc_idx = graph
.nodelist
.iter()
.position(|node| node == inputs[0])
.unwrap();
let olmc_row = olmcmap
.iter()
.position(|r| r == &Some(NodeIdx(olmc_idx)))
.unwrap();
// we have the row.
let pin = olmc_row + chip_to_olmc_offset(chip); // TODO: fix!
debug!("OLMC discovered on {pin}");
Ok(pin as u32)
}
_ => Err(MappingError::Unknown),
}
}
/// Takes a gal sop, and turns it into a vec of mapped pins.
fn make_term_from_sop(
graph: &Graph,
pcf: &PcfFile,
olmcmap: &[Option<NodeIdx>],
chip: &Chip,
sop: GalSop,
) -> Term {
let table = sop.parameters.table.as_bytes();
let n_products = sop.parameters.depth;
let product_size = sop.parameters.width;
let chunksize = product_size * 2; // 00 for dontcare, 01 for negation, 10 for positive i think
debug!("Making Term from SOP {:?}", sop);
let mut input_nets = sop.connections.get("A").unwrap().clone();
input_nets.reverse(); // the order is backwards from how we read it in the alg.
let terms: Vec<Vec<Pin>> = table
.chunks(chunksize as usize)
.map(|chunk| {
// chunk is now a block of terms.
let terms: Vec<&str> = chunk.chunks(2).map(|c| from_utf8(c).unwrap()).collect();
// create our term
let pins: Vec<Pin> = terms
.iter()
.enumerate()
.filter_map(|(idx, product)| {
let net_for_pin = input_nets.get(idx).unwrap();
// now use the helper to find the true hardware pin
let hwpin: usize = find_hwpin_for_net(graph, pcf, olmcmap, &chip, net_for_pin)
.unwrap() as usize;
// we now have our hardware pin number!
match *product {
"01" => Some(Pin {
pin: hwpin,
neg: true,
}),
"10" => Some(Pin {
pin: hwpin,
neg: false,
}),
_ => None,
}
})
.collect();
pins
})
.collect();
assert_eq!(n_products as usize, terms.len());
Term {
line_num: 0,
pins: terms,
}
}
fn valid_inputs(chip: Chip) -> Vec<u32> {
match chip {
Chip::GAL16V8 => vec![
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19,
],
Chip::GAL22V10 => vec![
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
],
_ => panic!("unsupported chip"),
}
}
pub fn graph_convert(graph: &Graph, pcf: &PcfFile, chip: Chip) -> Result<Blueprint, MappingError> {
let mut bp = Blueprint::new(chip);
let valid_inp = valid_inputs(chip);
let mut olmcmap: Vec<Option<NodeIdx>> = vec![None; chip.num_olmcs()];
for port in &graph.ports {
let pin = port
.lookup(&pcf)
.ok_or(MappingError::MissingConstraint(port.clone()))?;
if valid_inp.contains(&pin) {
if let Some(olmcrow) = chip.pin_to_olmc(pin as usize) {
if port.direction == PortDirection::Input {
olmcmap[olmcrow] = Some(NodeIdx(usize::MAX));
} // otherwise we do not care at this point!
}
} else {
// we don't have a constraint for this port
return Err(MappingError::MissingConstraint(port.clone()).into());
}
}
debug!("Graph adj list is {:?}", graph.adjlist);
// phase one: OLMC mapping
// start by finding the constraints.
let mut deferrals: Vec<NodeIdx> = Vec::new();
// For all the OLMCs in the graph, we either map it directly since it's constrained to a pin,
// or we defer it to later.
for o in graph.get_olmc_idx() {
debug!("Processing OLMC {o}");
debug!("Value = {:?}", graph.get_node(&o));
// find all the
let n: &Net;
if let Some(Node::Olmc(olmc)) = graph.get_node(&o) {
n = &olmc.connections.get("Y").ok_or(MappingError::Unknown)?[0];
} else {
warn!("Could not find output net! Silently skipping");
continue;
}
// if it's got a port we map it now else we defer it.
let port = graph.find_port(n);
match port {
Some(port) => {
info!("Found a port, performing port lookup");
let pin = port
.lookup(pcf)
.ok_or(MappingError::MissingConstraint(port.clone()))?;
let olmc_row = chip
.pin_to_olmc(pin as usize)
.ok_or(MappingError::Unknown)?;
// TODO: check size of row vs size of SOP
// FIXME: -0 to size if registered, if comb, size - 1
let sop = get_sop_for_olmc(graph, &o, "A")?;
let sopsize: usize = sop.parameters.depth as usize;
let rowsize = chip.num_rows_for_olmc(olmc_row);
if sopsize > rowsize {
return Err(MappingError::SopTooBig {
name: sop.name.unwrap(),
sop_size: sopsize,
wanted_size: rowsize,
});
}
info!("Found a real pin to map: Mapping node {o:?} onto row {olmc_row}");
// check if OLMC row is already in use
if let Some(o) = olmcmap[olmc_row] {
error!("already exists in {o:?}");
return Err(MappingError::Unknown);
}
olmcmap[olmc_row] = Some(o);
}
None => {
info!("No port found, deferring placement for {o:?}");
deferrals.push(o)
}
}
}
// at this point, we should have mapped
let num_mapped = olmcmap.iter().filter(|x| x.is_some()).count();
info!("Mapped {num_mapped} OLMCS, {} deferred", deferrals.len());
// to map the deferred ones, we need to find the smallest SOP that is still large enough for
// it.
// Vec<(olmc_index,size)>
let mut unused_rows = olmcmap
.iter()
.enumerate() // get the index
.filter_map(|(i, x)| if x.is_none() { Some(i) } else { None }) // find the ones that are
.map(|i| (i, chip.num_rows_for_olmc(i))) // get the size of the row
.collect();
debug!("Unused rows={:?}", unused_rows);
// find the smallest row that fits.
info!("Starting deferred mapping process");
for olmc in deferrals {
let row = map_remaining_olmc(graph, olmc, &unused_rows)?;
debug!("Found a mapping for {olmc} in row {} size {}", row.0, row.1);
// insert into the mapping
olmcmap[row.0] = Some(olmc);
// remove this row from the available rows
// i.e only keep those that are not equal to this row.
unused_rows.retain(|r| r != &row);
}
// at this point, we have mapped every OLMC.
// find the SOPs and for each sop, find
info!("Deferred mapping complete, starting SOP mapping");
for (idx, olmc) in olmcmap.iter().enumerate() {
match olmc {
Some(node) => {
debug!("Mapping node {node} at row {idx}");
let sop = get_sop_for_olmc(graph, node, "A")?;
debug!("Got SOP {:?} attached to node", sop);
let term = make_term_from_sop(graph, pcf, &olmcmap, &chip, sop);
debug!("Got term {:?}", term);
let gal_olmc_node = graph.get_node(node).unwrap();
if let Node::Olmc(o) = gal_olmc_node {
// get the tristate net.
let tristate_nets = o.connections.get("E").unwrap();
assert_eq!(
tristate_nets.len(),
1,
"Should be exactly one tristate net lol"
);
let tri_term = match &tristate_nets[0] {
Net::N(_) => {
debug!("Tristate net discovered, mapping SOP");
let tri_sop = get_sop_for_olmc(graph, node, "E")?;
debug!("Sop found, {:?}", tri_sop);
assert_eq!(tri_sop.parameters.depth, 1);
let tri_term =
make_term_from_sop(graph, pcf, &olmcmap, &chip, tri_sop);
debug!("Term for tristate SOP made = {:?}", tri_term);
tri_term
}
Net::LiteralOne => true_term(0),
Net::LiteralZero => {
warn!("Making a false term for output enable, this shouldn't happen!");
false_term(0)
}
_ => {
panic!("E net should not be undriven!");
}
};
let outpin = Pin {
pin: 0, // PIN VALUE IS DISCARDED FOR THIS CALL
neg: o.parameters.inverted,
};
let pinmode = if o.parameters.registered {
PinMode::Registered
} else {
// Tristate mode is "combinational" in the chipwide reg mode.
// Comb mode is only supported in simple mode
PinMode::Tristate
};
debug!(
"Setting base for olmc outpin: {:?}, pinmode: {:?}",
outpin, pinmode
);
bp.olmcs[idx]
.set_base(&outpin, term, pinmode)
.ok_or(MappingError::Unknown)?;
let dummy_pin = Pin { pin: 0, neg: false };
if !(matches!(chip, Chip::GAL16V8) && o.parameters.registered) {
bp.olmcs[idx].set_enable(&dummy_pin, tri_term)?;
}
} else {
panic!("screaming");
}
}
None => {}
}
}
Ok(bp)
}
#[cfg(test)]
mod tests {
use super::*;
use anyhow::Result;
#[test]
fn test_sop_to_term() -> Result<()> {
let pct = "set_io pinName 1";
Ok(())
}
}